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ABSTRACT
Experimental evolution involves severe, periodic reductions in population size when fresh media are

inoculated during serial transfer. These bottlenecks affect the dynamics of evolution, reducing the probabil-
ity that a beneficial mutation will reach fixation. We quantify the impact of these bottlenecks on the
evolutionary dynamics, for populations that grow exponentially between transfers and for populations in
which growth is curbed by a resource-limited environment. We find that in both cases, mutations that survive
bottlenecks are equally likely to occur, per unit time, at all times during the growth phase. We estimate
the total fraction of beneficial mutations that are lost due to bottlenecks during experimental evolution
protocols and derive the “optimal” dilution ratio, the ratio that maximizes the number of surviving beneficial
mutations. Although more severe dilution ratios are often used in the literature, we find that a ratio of
0.1–0.2 minimizes the chances that rare beneficial mutations are lost. Finally, we provide a number of useful
approximate results and illustrate our approach with applications to experimental evolution protocols in
the literature.

RAPIDLY evolving organisms such as bacteria, viruses, For most experiments in the field, therefore, the pop-
ulation “life cycle” as described above has an importantand protozoa will adapt to laboratory conditions
distinguishing feature: population bottlenecks. Theseon short, experimentally feasible timescales. In a single
severe, regular bottlenecks profoundly affect the dy-controlled experiment, major evolutionary change may
namics of evolution, reducing the probability that a bene-occur in these populations, while both phenotypic and
ficial mutation will reach fixation. Before interpretinggenotypic differences can be monitored (Lenski et al.
results obtained by experimental evolution, we would1991; Lenski and Travisano 1994; Rosenzweig et al.
therefore like to understand the impact of these bottle-1994; Bell and Reboud 1997; Bull et al. 1997; Snie-
necks on the evolving population. We need to answergowski et al. 1997; Rainey and Travisano 1998; Treves
the following intriguing questions: What fraction of ben-et al. 1998; Papadopoulos et al. 1999; Wichman et al.
eficial mutations are lost due to population bottlenecks?1999). Understandably, these experiments are generat-
Which mutations are preferentially lost? And how doing enormous interest in evolutionary biology (Appen-
bottlenecks ultimately affect the variability of the evolu-zeller 1999).
tionary trajectory? These questions are important notThe usual elements of the experimental protocol are
only for experimental populations, but also for naturalas follows. In experiments involving bacteria, these are
infection cycles: Bacteria or viruses, for example, maygrown at a constant temperature in a sugar-rich broth.
colonize hosts from an initial inoculum that representsAfter a phase of population growth, a small set of the
a population bottleneck.founder population is typically sampled and reintroduced

The answer to each of these questions relies funda-into an identical but unpopulated environment. This pro-
mentally on our understanding of the fixation probabil-cedure is repeated over many generations (serial passag-
ity: the probability that a rare beneficial mutation willing). When viruses are studied, a host species, commonly
ultimately fix in a population. For a population of con-a bacterium, is maintained alongside the phage in cul-
stant size, this question was first addressed by the “greatture. In a two-stage chemostat, samples from the phage
trinity” (Crow 1994) of population genetics, Fishertube are extracted and used to reinoculate the system
(1922), Haldane (1927), and Wright (1931). Kimurawhen tubes are changed, which occurs on a regular basis.
(1957, 1962) was able to extend this classic work in a
number of directions using a diffusion approximation,
although populations of constant size were still assumed.1Corresponding author: Applied Mathematics, University of Western

Ontario, London, Ontario N6A 5B7, Canada. For cyclic population sizes, Ewens (1967) first com-
E-mail: lwahl@uwo.ca puted the fixation probability using an iterative solution
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by Otto and Whitlock (1997). In all of the above solu- V(t, s) � 1 � 2se�r tr�. (1)
tions, the offspring distribution is assumed to be Poisson;

Growth in a limited resource: We want to test thethe implications of relaxing this assumption are ex-
validity of the exponential model of population growth

plored by Pollak (2000).
by comparing it with extinction probabilities for growth

In a previous article, we describe two derivations for
in a limited resource environment. A range of models

the extinction probability in populations with periodic
are available for resource-limited growth (Edelstein-Kes-

bottlenecks (Wahl and Gerrish 2001). We use extinc- het 1988); we have chosen the following set of differen-
tion probability, the probability that a rare mutation is tial equations (Levin et al. 2000) because parameters
lost due to bottlenecks, rather than fixation probability are available for a specific serial transfer protocol. In a
because factors other than bottlenecks may influence later section of the article, we consider another, simpler
the fixation probability in asexual populations; clonal model that is based on the environmental carrying ca-
interference (Gerrish and Lenski 1998) is one exam- pacity.
ple. In the sections that follow, we extend our approach The dynamics of population growth in the “resource
numerically to treat populations in resource-limited en- concentration” model are given by
vironments. We then explore the implications of these

n· � �(R)nresults for experimental evolution.
Although many of these implications follow more- m· � �(R)(1 � s)m

or-less directly from previous work (Ewens 1967; Otto
R
·

� ��(R)E(n � m(1 � s)) (2)and Whitlock 1997; Wahl and Gerrish 2001), their
impact for experimental evolution has not been eluci- with �(R) � WR/(K � R) (Stewart and Levin 1973).
dated. We find, for example, that bottlenecks, like ge- This system models a volume, �, of the serial transfer
netic drift, filter our view of beneficial mutations: The culture, where n is the density, or concentration of “wild-
selective advantage of mutations that eventually survive type” individuals in the culture, m is the concentration
bottlenecks is about twice as large as the mean selective of individuals carrying the gene of interest, and R is the
advantage of all beneficial mutations that occur. We also resource concentration remaining in the environment.
find that even in populations that grow exponentially �(R) gives the growth rate, per hour, for the population
between bottlenecks, and therefore produce many more at a given resource concentration and is determined by
mutations toward the end of the growth phase, success- Michealis-Menten kinetics with maximum growth rate
ful mutations are equally likely to occur at all times W and half-maximal concentration K. The conversion
during population growth. Finally, we are able to deter- parameter E gives the amount of resource required to
mine the dilution ratio—�0.1–0.2—which allows the produce a single new individual in the population.
largest number of beneficial mutations to survive. For Integrating these equations numerically, we deter-
the approximation we use for the survival probability, mine the population density during a growth phase in
this optimal dilution ratio is completely independent a serial passaging protocol. The frequency of the gene
of such factors as population size and growth rate. of interest at the end of the growth phase, z, is simply

calculated as z � m(�)/(m(�) � n(�)).
The sampling step is modeled as a binomial process.

EXTINCTION PROBABILITY IN EXPERIMENTAL For gene frequency z and sample size N0, the probability
EVOLUTION that j copies of the gene are in the sample is given by

To model a serial passaging protocol, we consider a
population of initial size N0, which grows to a final size pj � �N0

j �z j(1 � z)N0�j.
Nf during time interval [0, �]. At time �, the population
is sampled with dilution ratio D, such that DNf � N0. The output from the sampling process is a distribution
This cycle of growth and sampling is repeated many times. of possible values for j and their respective probabilities.
We are interested in the fate of a rare beneficial muta- Each of these values of j is then treated as an input to
tion with selective advantage s, which might occur for the next phase of growth and sampling (m(0) � j/�), and
the first time at time t during the growth phase. the outputs are weighted by the appropriate probabili-

Exponential growth: In a previous article (Wahl and ties and summed.
Gerrish 2001), we derive the extinction probability, The ultimate probability of extinction computed by
V(t, s), for such a mutation in a population that grows these numerical methods is denoted Vn(t, s). To estimate
exponentially during the growth phase at rate r. V(t, s) this value we examine the total probability that zero copies
reflects the probability that a single mutation with ad- of the original mutation are present in the population
vantage s occurring at time t during a growth phase will after each bottleneck and continue computations until
leave no descendants in the distant future. We found this probability changes negligibly from bottleneck to
the following analytical approximation to the extinction bottleneck.

The parameter values provided by Levin et al. (2000)probability when s is small:
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Figure 1.—Extinction probabilities, resource-limited growth. An experimental protocol in which resource-limited growth
occurs in a 10-ml volume with an initial population density of 107 bacteria per ml is modeled. After the resource has been
consumed and growth has stopped (�5 hr), the population is sampled with a dilution factor D � 0.01 and the process is repeated.
The top left shows the total population size vs. time (solid line). The dashed line shows for comparison the time course of
population growth when growth is exponential; differences are visible in the inset only. At time t during the growth phase, a
single copy of a beneficial mutation is introduced. Symbols in the bottom left show numerical estimates for the probability that
the mutation is ultimately eliminated by the bottlenecks, given a selective advantage s � 0.01 (circles), 0.05 (triangles), and 0.1
(squares). Parameters used were as per Levin et al. (2000): W � 0.85, K � 0.25, R0 � 500, E � 5 � 10�7. The right top and
bottom show the same results for a parameter set that gives a slower turnover of population growth; parameters that differ are
V � 2, K � 250. The dashed line again plots the population size under exponential growth for comparison.

describe the growth of Escherichia coli in Davis minimal growth rate (dashed line). This curve is indistinguish-
able from the experimental growth curve, differing onlymedium, supplemented with 500 �g/ml glucose as the

sole and limiting carbon source. Cultures (10 ml) were during the final few minutes of the growth phase (inset).
Thus for the experimentally determined parameter val-initiated with �107 bacteria/ml and grew to final densi-

ties of �109 bacteria/ml in just over 5 hr. Figure 1, top ues, near-exponential growth is maintained in the re-
source-limited system until the resource is severely de-left, shows the total population size as a function of time

for these parameters (solid line). Integration was stopped pleted.
In Figure 1, bottom, the ultimate extinction probabil-when the population ceased to grow, that is, when the

resource concentration reached zero. For comparison, ity is plotted for mutations with selective advantages s �
0.01, 0.05, and 0.1 in a resource-limited environment.we created a second parameter set that allowed the popula-

tion to grow to the same final size in the same time, but For the parameter values from the literature (Figure 1,
bottom left), these extinction probabilities were slightlyfor which the “turnover” was more gradual (Figure 1,

top right, solid line). The figure also shows the popula- lower than those calculated for exponential growth, dif-
fering in the third decimal place (data not shown). Fortion size for strictly exponential growth at the initial
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these parameter values, the only significant effect of 1, i � B, has an exponential distribution that is indepen-
dent of the wild-type fitness (H. A. Orr and P. J. Gerrish,resource-limited growth is to limit the time over which

exponential growth can be maintained. Extinction prob- personal communication). Si has an invariant exponential
distribution because W0 and the Wi are extreme valuesabilities, and by extension other aspects of the evolution-

ary dynamics, are affected very little. When the shoulder of the unknown parent distribution of fitnesses. Our
results can thus be tailored to either assumption aboutof the growth curve occurs earlier and more gradually

(Figure 1, right), extinction probability at each time is tail behavior by defining the Si appropriately. We there-
fore use an exponential function, 	e�	s, to model theincreased.
distribution of S, defined appropriately, for beneficial
mutations.

TIME DISTRIBUTION OF SUCCESSFUL MUTATIONS Equation 3 illustrates a catch-22 for beneficial muta-
tions in bottlenecked populations: While mutations thatWe want to know when “successful” mutations occur,
arise early in the growth phase have a significant proba-that is, mutations that survive not only the first bottleneck
bility of survival, the expected number of mutations atthey face, but all subsequent bottlenecks. The expected
these times is very small; conversely late mutations arenumber of mutations that occur at time t and survive
likely to occur and unlikely to survive.bottlenecks, 
(t), is given by the following integral:

As an example of how these two factors interact, we

(t) � �

∞

s�0

N
·
�	e�	s(1 � V(t, s))ds. (3) plot the probability that a beneficial mutation occurs

at time t and ultimately survives bottlenecks in Figure
2, for exponential growth (solid line) and resource-Here N

·
is the time derivative of N, that is, the number

of replications at time t, and � is the beneficial mutation limited growth (dashed line). In both cases, the distribu-
tion is relatively flat for all times throughout the growthrate per replication. Our implicit assumption is that

population growth is a “pure birth process”; we assume phase. This implies that although most replications occur
toward the end of the growth phase, mutations that arethat the death rate of individuals in the population is

negligible compared to the growth rate during the ultimately successful occur at all times during growth. Note
that by “successful” we mean mutations that survive thegrowth phase. Note that this assumption would not hold,

generally, in chemostat populations. (If a population direct effects of the bottleneck—beneficial mutations
may also be lost due to drift (Crow and Kimura 1970)has a significant death rate, Equation 3 gives an upper

bound on the expected number of mutations.) For ex- or competition (Gerrish and Lenski 1998).
ponential growth, where N(t) � N0e rt, the number of
replications N

·
is simply rN(t) � N0re rt. For resource-

FITNESS DISTRIBUTION OF SUCCESSFULlimited growth, we evaluate system 2 numerically, and
MUTATIONS

the expected number of replications is given by n· �
In analogy to the previous section, we can also deter-�(R)n. (Also note that � is the rate at which beneficial

mine the number of mutations with selective advantagemutations occur per new individual contributed to the
s that occur during one growth phase and ultimatelypopulation. In bacteria, for example, this mutation rate
survive bottlenecks, �(s). In this case we evaluate theis twice the usual mutation rate per genome per replica-
following integral:tion, because a new strand is synthesized in each of two

daughter cells after bacterial fission.)
�(s) � �

�

t�0

N
·
�	e�	s(1 � V(t, s))dt. (4)The factor 1 � V(t, s) is the survival probability of a

mutation with selective advantage s, but we need to know
the probability distribution of s to complete Equation 3. Here we find another catch-22: Mutations with large s

are most likely to survive a bottleneck, while mutationsTo determine this distribution, note that we require
only the distribution of advantageous mutations, drawn with small s are most likely to occur.

Typical distributions for �(s) are illustrated in Figurefrom a very large number of mutational neighbors, M,
of the replicating genome. If the replicating genome 3. The solid lines plot the distribution of s for mutations

that ultimately survive the bottleneck protocol, for threehas fitness W0, for example, the fitness values of all
possible daughter genomes (Wj, j � 1 . . . M) are mem- different values of the dilution ratio (D � 0.1, 0.01, and

0.001 from top to bottom, respectively). These curvesbers of some unknown fitness distribution. Define the
set B to be all j such that Wj � W0; i.e., B is the set of are plotted again in the inset for comparison with the

original distribution of s (dashed line). We find thatindices of beneficial mutations. If the right tail of the
parent fitness distribution approaches zero exponen- bottlenecks severely affect the distribution of beneficial

mutations, effectively eliminating mutations with verytially, then the fitness difference, Si � Wi � W0, where i �
B has an exponential distribution that is independent of small selective advantage and vastly reducing the fre-

quency of mutations with moderate benefit.the wild-type fitness (for large M). If the right tail is heavier
than exponential such that it “varies regularly” (see Feller Note, however, that the dotted lines in Figure 3 corre-

spond to a dilution ratio of 0.5. Diluting at 0.5 implies1971 for definition), the selection coefficient, Si � Wi/W0 �
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Figure 2.—Time distribution for suc-
cessful mutations. The probability that a
mutation occurs at time t and ultimately
survives bottlenecks is plotted for expo-
nential (dashed line) and resource-lim-
ited (solid line) growth. Note that the
distribution is fairly flat; mutations that
are ultimately successful are equally
likely to occur at all times. Time is nor-
malized by the length of the growth
phase, �. Parameters for exponential
growth are N0 � 1 � 105, r � ln 2, � � 7,
� � 5 � 10�5. Parameters for resource-
limited growth are as given in Figure 1,
with � � 5.45 and � � 4 � 10�9. In both
cases we have assumed that the mutation
has selective advantage s � 0.1.

that the population is allowed to double for one genera- Note that, as predicted, the expected number of success-
tion, but only one-half of these offspring survive; D � ful mutations does not depend on t; mutations that are
0.5 is formally equivalent to classical models of a popula- ultimately successful occur at all times during the growth
tion of constant size experiencing genetic drift. For com- phase with equal probability.
parison, we plot results for two constant population sizes: Distribution of s for successful mutations: Similarly,
a population size of N0 and a population size of Nf (top we can approximate the distribution of the selective
and bottom dotted lines, respectively). Perhaps counter- advantage for successful mutations using Equations 1
intuitively, the total number of successful mutations is and 4. Here we find that the expected number of suc-
lower in both of these cases than it would be for a popula- cessful mutations during one growth phase with advan-
tion experiencing bottlenecks with D � 0.1. Although tage s is
bottlenecks reduce the fixation probability of any muta-
tion (see Figure 4), many more mutations occur when �(s) � 	e�	s �

�

0

�rN0e rt(2e�rtrs�)dt � 2N0�(r�)2	se�	s.
the population is allowed to grow exponentially for sev-
eral generations, as opposed to just a single doubling, This allows us to compute two interesting results. First,
between bottlenecks. This implies that the total substitu- since the total number of successful mutations is propor-
tion rate of mutations can be larger in bottlenecked tional to se�	s, the probability distribution for successful
populations than in populations of constant size, al- mutations must be given by 	2se�	s. The mean of this
though the effect is small if the constant population distribution is so � 2/	. Thus the mean value of the
can be maintained at Nf. This point will be taken up selective advantage for successful mutations, i.e., for
again in the discussion. those mutations that would actually be observed during

experimental evolution, is twice the mean value of the
underlying distribution of the selective advantage. ThisSOME USEFUL APPROXIMATIONS
result is not surprising; the same is true for mutations

Time distribution of successful mutations: Figure 2 that survive drift.
demonstrated that the distribution across time for muta- Second, for a mutation with selective advantage s, the
tions that are ultimately successful is remarkably flat. approximate probability of fixation can be written as a
We formalize this intriguing result as follows. Using function of the dilution ratio:
Equation 1 as an approximation for the extinction prob-
ability in Equation 3, the expected number of successful U(s) � 2sD(ln D)2.
mutations at each time t is roughly

This result is obtained by dividing the number of suc-
cessful mutations with advantage s by the total number
(t) � �rN0e rt �

∞

0

	e�	s(2e�rtrs�)ds �
2N0�r 2�

	
.

of mutations that occur with advantage s. Once again
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Figure 3.—Distribution of s for successful mutations. The expected number of successful mutations with selective advantage
s is plotted against s. Results are shown as solid lines for dilution factors of 0.1, 0.01, and 0.001, from top to bottom, respectively.
For comparison, results for dilution factors of 0.9 (dot-dashed line) and 0.5 (dotted lines) are also shown. Note that the dilution
rate of 0.5 corresponds to a constant population size subject to genetic drift (see text for details). We plot two cases, a constant
population size of Nf and N0 (top and bottom dotted lines, respectively). The distributions for D � 0.1, 0.01, and 0.001 are
redisplayed on a semilog plot in the inset (solid lines) for comparison with the distribution of all mutations that are expected
to occur (dashed line). Note that bottlenecks, like drift, reduce the number of mutations by many orders of magnitude. Exponential
growth was assumed with N0 � 1 � 109D, Nf � 1 � 109, r � ln 2, � � �ln D/r, � � 2 � 109. For the population held constant
at Nf, N0 � 1 � 109 and Nf � 2 � 109.

we find a classic result: The probability that a mutation that occur during one growth phase and ultimately sur-
ultimately survives varies as 2s (Haldane 1927). For vive. We find
bottlenecks, however, this probability is reduced by the
factor D(ln D)2. Figure 4 shows this reduction in the L � �

∞

0
�

�

0

	e�	s�rN0e rt(2e�rtrs�)dtds
classical fixation probability as a function of the dilution
factor. We observe, for example, that fixation probabil-

� 2
	

�N0(ln D)2
ity is �75% of the classical prediction for dilutions of
1:10, but falls to only 1% of the classical value for dilu-
tions of 1:104. More importantly, we see that the fixation

�
2
	

�NfD(ln D)2. (5)
probability is maximized when D � e�2 � 0.135. This
suggests that for any experimental evolution protocol

From the central line of this equation, we see that L iswith repeated bottlenecks, a dilution ratio of �0.135
maximized as we might expect for high mutation rateswill minimize the probability that beneficial mutations
and a distribution of s that has a large mean value. L isare lost during bottlenecks. This intriguing result is ex-
also maximized by having a large initial population, N0.plained further in the following subsection.
If N0 is fixed, L is maximized by having an infinitelyTotal number of beneficial mutations that occur and
small dilution ratio. This means that for a fixed N0 (andsurvive: We can also substitute Equation 1 into a double

integral over t and s to estimate the number of mutations variable Nf), the greatest number of successful mutations
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Figure 4.—Reduction in fixation probability due to bottlenecks. The probability that a mutation with selective advantage s
survives drift is classically estimated as U(s) � 2s. The probability that such a mutation survives population bottlenecks is given
by 2s D(ln D)2/r ; that is, U(s) is reduced by a factor D(ln D)2/r. This factor is plotted against s for r � ln 2 (solid line) and r � 1
(dashed line). For severe dilution factors, the probability of survival is greatly reduced by population bottlenecks. Note that the
optimal dilution ratio occurs at D � e�2 � 0.135.

is produced by using an infinitely long growth phase; mutations are eliminated by population bottlenecks in
i.e., one should never actually dilute the culture. From the experimental protocol.
the last line of Equation 5, we find the more realistic To address this question with greater accuracy, we
case where Nf is constrained. In this situation the largest consider population growth in a limited-resource envi-
number of successful mutations is produced when Nf is ronment. Unfortunately the model described in system
constrained to be as large as possible, and D � e�2 � 2 is somewhat unwieldy for our purposes, and so in
0.135. this section we have chosen to use a simpler model of

Note that each of the expressions in this section relies population growth:
on the approximation to V(t, s) given in Equation 1,
which relies on the assumptions that s is small and x· � r �1 �

x
K �x . (6)

growth is exponential. We reexamine our derivation of
the optimal dilution ratio below, for resource-limited

Here x is the population density, r is the growth rategrowth.
(per unit time), and K is the carrying capacity of the
environment (test tube).

MAXIMIZING THE RATE OF EVOLUTION The solution to this equation is

When tracking phenotypic or genotypic change over
x �

Aert

1 � (A/K)e rt
, (7)the course of an experiment, we might want to minimize

the probability that a beneficial mutation is eliminated
where A � N0/(1 � N0/K), and N0 is the initial popula-by chance. This does not imply that we wish to alter the
tion size. Recall that the dilution ratio, D, is defined asselective pressures on specific mutations; instead, we

wish to reduce the overall probability that beneficial the ratio N0/Nf, where Nf is the population size at the
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Figure 5.—The optimal dilution ra-
tio. W, the expected number of surviving
mutations, is plotted against the dilution
ratio for s � 0.01, 0.02, 0.03, . . . 0.1.
We find that the number of surviving
beneficial mutations is maximized in all
cases for D � 0.15. The other parameters
used in the model are r � 0.85/hr, K �
109, and � � 10�9. Results were deter-
mined numerically.

end of one growth phase of duration �. We note that lost during the bottleneck. For the parameters used in
typically Nf � K and so D � N0/K . this example, a dilution ratio of D � 0.15 is clearly

Let L be the total number of mutations that are ex- optimal. This result is interesting since more severe dilu-
pected to occur during one growth phase and that will tion ratios are often used in the literature. The parame-
ultimately survive bottlenecks. L is given by the double ters we used were chosen, once again, to correspond
integral, to the model parameters provided for a specific serial

passaging regime for E. coli (Levin et al. 2000); in numer-
L � �

∞

0

	e�	sW(s)ds, (8) ical exploration of the surrounding parameter space,
we found this result to be surprisingly robust. We hy-

where W(s), the expected number of successful muta- pothesize that this value is largely determined by the
tions with selective advantage s, is given by underlying survival probability, U(s), as approximated

in the previous section. Further investigation of these
W(s) � �

�

0

�x·(t)(1 � V(t, s))dt. (9) intriguing results is clearly necessary, although beyond
the scope of this article.

Here V(t, s) is the extinction probability as previously
defined, and we again assume that the number of mu-
tants arising in the population is proportional to the APPLICATIONS
total number of replications, �x·(t); i.e., the death rate

We conclude our article with three examples, illustrat-in the population during the growth phase is negligible.
ing the possible application of our results and furtherW is a function of s, N0 (or alternately D), and �.
predictions of the model.Suppose we fix �; that is, we wish to sample our popula-

Survival probability for a specific mutation: In sometion every 24 hr, for example. We can then solve for
experimental protocols, the fate of a known mutationthe dilution ratio, D, which maximizes W for a particu-
is of interest. An example here is the study of adaptivelar value of s. Figure 5 plots W as a function of the
evolution in E. coli. Levin et al. (2000) compare rates ofdilution ratio for several values of s ; these results were
reversion and compensatory mutations for streptomycin-obtained numerically. We find that the dilution ratio
resistant E. coli evolving in the absence of the antibioticthat maximizes W is only weakly dependent on s. Thus
(Schrag and Perrot 1996). One purpose of the studythe total number of successful mutations, L, will simply
was to determine how often serial cultures will be domi-be maximized when W is maximized.
nated by fitness-compensated mutants, as opposed toGiven the parameters describing the growth rate and
reversion or resistant mutants. Through simulation stud-carrying capacity of the medium, we are thus able to
ies, Levin et al. (2000) found that 56.8% of culturesfind an optimal value of the dilution ratio, a value that

minimizes the number of beneficial mutations that are are dominated by fitness-compensated mutants after 50
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serial transfers, an important result that we can also the rate at which beneficial mutations occur per replica-
tion, is �1.44 � 10�8. Since the overall mutation ratederive analytically.
per site per replication is �10�6 in these phage, andGiven a beneficial mutation with a known selective
the X174 genome has 5386 bases, this result impliesadvantage s that arises at rate � per replication, we
that �1 in 1 million mutations is beneficial during theuse Equation 4 to determine the probability that the
“flask adaptation” of this phage.mutation in question occurs during a single growth

Fitness gains as a function of bottleneck size: Burchphase and ultimately survives bottlenecks. The fitness
and Chao (1999) studied the evolution of the RNAadvantage of the compensatory mutant over the resis-
virus φ6, examining the effect of bottleneck size on thetant mutant was determined by pairwise competition in
total number and size of adaptive “steps” taken duringexperimental culture; this procedure gave an estimate
recovery from a deleterious mutation. We have repli-of s as �0.92/0.8 � 1 � 0.15. Using appropriate experi-
cated a similar set of experiments, assuming phage pop-mental parameters for resource-limited growth, we de-
ulations that expand from 1 to 8 � 109 phage in fivetermined that the probability of occurrence and survival
generations and are then subject to seven bottleneckfor a mutation with a similar fitness advantage is �(s) �
sizes (10, 33, 100, 333, 1000, 2500, and 10,000). Note0.0168 per transfer. Thus, the probability that the muta-
that in our formalism, these bottleneck sizes corre-tion does not occur and survive in 50 transfers is (1 �
spond to variations in N0; the dilution ratio is constant0.0168)50, or 42.8%. This gives an analytical estimate
at 1/(8 � 109).that fitness-compensated mutants will dominate 57.2%

For the results described below, we used 	 � 5, consis-of cultures after 50 transfers, in excellent agreement
tent with estimates in another RNA phage (Wichmanwith the published results.
et al. 1999; Wahl and Krakauer 2000), and assumedEstimating the mutation rate for beneficial mutations:
a mutation rate to beneficial mutations of � � 10�7.The number of mutations that fix during experimental
The latter value was estimated for a genome of 104 bases,evolution may be used to estimate the fraction of all
a per base mutation rate of 10�5, and a 1 in 1 millionmutations that are beneficial. As an example, consider
chance that a given mutation is beneficial. Our resultsa recent study of “big-benefit” mutations in the adapta-
are highly sensitive to these ad hoc parameter valuestion of the bacteriophage X174 to heat (Bull et al.
and are intended as an illustration, not a quantitative2000). As part of this study, “flask-adapted” phage were
prediction for φ6 evolution.evolved from ancestor isolates; the evolving population

Using these parameters, we applied our model andwas grown through 66 serial passages of 10-ml cultures
numerically estimated the total number of mutationswith a dilution ratio of 10�4. An isolate from the 66th
that are expected to occur during one growth phasepassage differed from one ancestor phage at four nucle-
and ultimately reach fixation. This result was multipliedotide positions.
by the total number of growth phases (20), to estimateBull et al. (2000) report that the 10,000-fold increase
the total number of adaptive steps during an evolution-during each growth phase (from 105/ml to 109/ml)
ary trajectory. As shown in the top of Figure 6, ourrequired 45 min initially, but this time dropped to 35
model predicts that the number of steps should increase withmin over the course of the experiment. From these
the size of the bottleneck. (The two highest points on thenumbers, we find that N0 � 106, D � 10�4, the initial
graph have been truncated for clarity.) While this trendgrowth rate r � 12.28/hr, and the dilution time, �, is
was not examined experimentally, our predictions agree�40 min. The growth rate after the 66th passage was
well with the experimental results for bottlenecks �100015.79/hr, and therefore the mean observed fitness in-
(see Figure 3 in Burch and Chao 1999). Note, however,crease per substitution is so � ln(1.29)/4 � 0.063
that Burch and Chao propagated each population ei-(Wahl and Krakauer 2000). As we have shown in a
ther for 20 bottlenecks (100 generations), or until fit-previous section, so � 2/	, and so we have as a rough
ness was recovered to the original level. Thus for largerestimate that 	 � 32.
bottleneck sizes, propagation was discontinued afterL denotes the expected number of mutations that
only 5 or 10 bottlenecks. When examined on a log-logoccur during one growth phase and ultimately survive. If
plot (not shown), our data suggest that the number ofL is small, it gives the probability that a single, ultimately
adaptive steps increases exponentially with the loga-successful mutation occurs during one growth phase.
rithm of the bottleneck size.The probability that four beneficial mutations occur

We then multiplied the expected number of adaptiveduring 66 passages and ultimately survive is therefore
steps by the mean step size, log10(1 � s), to obtain the
expected total gain in fitness after 20 bottlenecks. In

P4 � �66
4 �L4(1 � L)62. excellent agreement with experimental results, the fit-

ness recovery was less than but approached one for
By maximum likelihood, we find that four successful bottleneck sizes �333. Thereafter, however, our model
mutations are most likely to occur when L � 0.061. predicts exponentially increasing gains in fitness with log(bot-

tleneck size). Once again, this was not tested experimen-Substituting this value into Equation 5, we find that �,
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times in the population, is taken into account as well
(Gerrish and Lenski 1998).

DISCUSSION

For the bottlenecks modeled here, a large, randomly
chosen fraction of the population is instantaneously
eliminated at the end of � generations. This is reminis-
cent of classic models of populations of fixed size, in
which one-half of the offspring are eliminated, at random,
after each generation. In fact, the population bottlenecks
in serial passaging, as modeled here, are formally equiva-
lent to many classic models of fixed population size: In
serial passaging, however, the bottlenecks are less fre-
quent (once every � generations, rather than once per
generation) and more severe (D � 1/100, for example,
rather than D � 1/2). In experimental evolution, one
could argue that the periods of sustained exponential
growth between bottlenecks, not the bottlenecks them-
selves, are the most distinguishing feature of the dy-
namics.

With this in mind, many of the results worked out in
the previous sections are not surprising. We find that the
survival probability of a rare mutation is proportional toFigure 6.—Adaptive steps and fitness gain vs. bottleneck
2s, and thus that the distribution of mutations that mightsize. In the top, the total expected number of mutations that

would occur and reach fixation in 100 generations (20 bottle- be observed during experimental evolution has a mean
necks) is plotted against the size of the inoculum, using param- that is twice the mean of the underlying distribution of
eters that mimic experiments by Burch and Chao (1999). possible mutational effects. We also find that using a more
These values give the number of adaptive steps expected in

complex model that includes resource-limited growth hasexperimental fitness trajectories. The bottom plots the total
little effect on the fate of beneficial mutations.fitness gain expected in the same populations after 100 genera-

tions. For n expected adaptive steps with mean step size s, the Perhaps less intuitive, however, is the finding that
total fitness gain was calculated as n log10(1 � s). Inoculum successful mutations are equally likely to occur at all
sizes, N0, were 10, 33, 100, 333, 1000, 2500, and 10,000; popula- times during the growth phase. This is because the ten-
tions grew for T � 5 generations at r � 4.56, corresponding

dency for mutations to occur at late times is roughlyto each phage expanding to 8 � 109 phage within a plaque.
balanced by the tendency for mutations to survive ifOther parameters were D � 1/(8 � 109), 	 � 5, � � 10�7.

Three points were truncated from the graph for clarity: The they occur early in the growth phase.
numbers of steps were 36 and 144 at N0 � 2500 and 10,000; Another intriguing result is our derivation of an opti-
fitness gain was 48 at 10,000. mal dilution ratio. When dilution occurs at �D � e�2 �

0.135, we find that the number of beneficial mutations
lost during bottlenecks is minimized. In fact, at thistally because none of the populations �333 were propa-
optimal ratio, the total number of ultimately successfulgated for 20 bottlenecks.
mutations, or the substitution rate, is larger than it wouldThe major discrepancy between the predictions of
be in a constant population size experiencing geneticour model and these experimental results involves one
drift (see Figure 3). For populations held constant atof the key findings of Burch and Chao (1999). As
the inoculum size, N0, this effect is pronounced; thediscussed previously, our model predicts that the mean
result still holds, however, if the population size is heldselective advantage of surviving mutations, s, is deter-
constant at Nf. Thus although bottlenecks reduce fixa-mined only by the underlying distribution of s and is
tion probability compared to constant populations, thegiven by 2/	. Thus the step size, or fitness difference,
overall fixation rate may be increased because of sus-expected for the first adaptive sweep in a population
tained periods of exponential growth between bottle-should not depend on the bottleneck size. We find that
necks.the balance between (1) the low probability that a muta-

We solved for the optimal dilution ratio using first-tion has a large effect and (2) the high probability that
order approximations and assuming s is small; for re-such a mutation will fix is independent of population
source-limited growth we solved for the optimal D nu-size. Our model, however, considers only the survival
merically for values of s between 0.01 and 0.1. Theof the mutation with respect to bottlenecks; this discrep-
selective advantage of beneficial mutations in experi-ancy may be resolved when clonal interference, the com-

petition between beneficial mutations arising at similar mental evolution can be quite large, however; values as
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